2/14/2012

This Lecture: Software
Development Methodologies

ECSC409: Software Engineering Principles

Definition

I -

A methodology is a system of methods and
PDOET AEPI AO OOAA ET A
software design.

The stage

A wide variety of published methodologies
An even larger set of informal or company
specific methodologies

The most mature are codified using specialist
tools and techniques

All methodologies are controversial as of
which is the best one...

2/14/2012

Example Methodologies

The Waterfall model (discussed in many
courses)

Spiral Model

Prototyping

Incremental Development

The Unified Process (UP)

Agile Methods and Extreme Programming
(XP)

The continuum

I IS

Inch

Agile Milestgne pebble iron
methods- risk driven bound
XP models contract
i Mil n
Hackers Adapiive SW p/:vmg ri\'/een
development models
Software CMM

CMM (Capability Maturity Model)

The continuum (2)

Cowboy hacking and micromanaging at the
extremes of the continuum

Basic distinctionAgilevs.Heavyweight

Agile methods are more fashionable to
AEOAOOOh AOO EOBO EA«
actually using)

2/14/2012

Example Methodologies (2)

Other:CleanroomDSDM, Mmodel, Scrum,
etc.)

Open Source Design: More of a philosophici
approach than a methodology, but with
implications for methodology

How to measure effectiveness of a

software development process?

CMM: Capability Maturity Model (see also slide with
Continuun)
A service mark owned by Software Engineering Institute
(SEI), Carnegie Mellon University
Based on observation rather than theory (data collected
from many organisations)
' DPI EAO O1 Al A@GEOOGEI C 1 OCA
process
Most organisations measured in the rang® With only very few
exceptions having reached level 4 (CMM scalgz5 is the top)L
More on CMM:
http://en.wikipedia.org/wiki/Capability_Maturity_Model

Example Methodologies: From the

continuum only three to be discussed

=) A The Waterfall model (discussed in many
courses)

Spiral Model

Prototyping

Incremental Development

The Unified Process (UP)

Agile Methods and Extreme Programming
(XP)

43

http://en.wikipedia.org/wiki/Capability_Maturity_Model

Plan Driven Model: Waterfall

ECSC409: Software Engineering Principles

The boxes and arrows

System feasiblilty
Validation | ™\
7y =—— iy,
| Ptans and requirements [
Validation | ™\
=

| Product design
Verlfication | ™\
X

1Y
\.__| Detalled design
Verification | ™\
X]
| code |
Unit test | ™\
L ¥
.| integration
Product verification | ™\
A !

X
_| iImplementation

System test [™\

This is just one example —

\._| operation ana
TReimeraace Revalidation |

actual steps differ for every project!

Main characteristics

Inspired by older engineering disciplines, such as
civil and mechanical (e.g. how cathedrals are built).
Development of a release is broken into phases,
AAAE 1 £ xEEAE EO -IAEE®DI1 AA
moving on.

When problems are found, must backtrack to a
previous phase and start again with the sigfi
procedures.

Much time and effort is spent on getting early
phases right, because all later phases depend on
them.

2/14/2012

2/14/2012

Problems with Waterfall

In practice it is rarely possible to go straight through
from requirements to design to implementation,
without backtracking.

There is no feedback on how well the system works,
AT A Eix xAl1 EO O110AO
very end.

Large danger of catastrophic failure: Any error in
key user requirements dooms entire process

Big chance that the design is not actually feasible
Big potential for unacceptable performance

Problems with Waterfall (2)

In my opinion, the waterfall model is simply a
fundamentally flawed metaphor for software
development.

Design and debugging together account for nearly
all of SW development, with almost no construction
step (just compilation!).

This is a huge difference from electronic hardware
design (where manufacturing and procurement
typically dominate the process), or civil engineering
(where construction dominates the process).

The Unified Process (UP)

ECSC409: Software Engineering Principles

2/14/2012

Main characteristics

Typical heavyweight approach. Iterative
modification of waterfall model using
modelling to forestall backtracking
Component based

Uses UML for all blueprints

Usecase driven

Architecture centric

Iterative and incremental

Relatives of the Unified Process

The IBM Rational Unified Process (RUP) is a
commercial product and toolset, superseding:

TheObjectoryProcess

TheBoochMethod

The ObjectModelingTechnique (OMT)
The Unified Software Development Process (UP) is i
published, norproprietary method based on the
RUP, but without specific commercial tools or
proprietary methods.

Main UP Phases

Each software release cycle proceeds through a series of
phases, each of which can have multiple modelling
iterations:

Elaboration Produces basic architectureplan of

construction; significant risks; major risks
addressed

Construction Produces betarelease system

Transition Introduces system to users

2/14/2012

Waterfall iteration within phases

PHASES

Each phase can have
multiple iterations (Project
proceeds top to bottom,
then left to right)

Each iteration can include
all workflows, but some are

L~ Inception

)

~--- Conslruction

Requirements

?

- [~ =~|- — = Transition

Analysis

e — more heavily weighted in

different phases
Still hard to change

Lkl requirements once
L implementation underway

WORKFLOWS

i

Implementation

lest

(%)
_/
-
o

ITERATIONS

UP vs. Waterfall

PHASI

7]

Construction

Transition
Transition

| P
1‘ Vo
Requirements | | || Requirements
©w Pl 1%
Z Analysis ||l | || 2 Analysis
s ’ o = ’ |
a L L 2 |
& Design - NEy Z Design L
= N = |
5 |l = I
= lmplementation | — L = Implementation
T]
N P . |
Test RPN Y Test
T 1
IR
1234567829
ITERATIONS ITERATIONS

UP as a Series of Models...

Analysis specification m
DL e | S
model Lmn«kl

realisation
Design
model distribution
Y

implementatipr

Deployment

model verification

r

Implementation
model

Test

model

2/14/2012

UP Example: Use Case

Initial use-case diagram:

Customer . Withdraw money

Q

Deposit money

Transfer between

accounts
22
UP Example
Analysis classes for withdrawing money:
USE-CASE MODEL ANALYSIS MODEL
Withdraw money Withdraw money
Dispenser Cashier Withdrawal Account
interface
23

UP Example

Collaboration diagram for withdrawing money:
}_

p y Cashier
: identfy jnierface request
Customer \
* Withdrawal
dispense authorise
H validate and
Dispenser withdraw
Y
Account

24

UP Example

Design classes introduced for analysis classes:

ANALYSIS MODEL

- K
Cashicr Dispenser Withdrawal
interface PARRS S

TR

Account
gy

Display Dispenser Withdrawal | | Account
sensor

Dispenser
feeder
Card reader

Cash

Transaction
ounte
DESIGN MODEL o manager
25
Class diagram which is part of the realization of the design model:
Account |=—| Account
Card reade: manager
Customer (m T
- Display
| M" 3 Client Transaction
N Key pad 7| manager m:m.ll_j-r
-
Dispenser 1 ‘ Withdrawal
feeder Cash
counter
Dispense
ser
2

UP Example

Sequence diagram for part of the realization:

Customer

Client

manager || cout

- ‘\.n«llu-lw Display || Key pad

nier || manager

Cash H'Iun\.uuun

Insert card
r - Card finserted

Ask for PIN code
Show rfquest -

Spdcify PIN cod

PIN code

Request fc

r validation

Ask amaunt

Show request

Specify anjount
= Amount
= Request c:

Request w

sh available

thdrawal

2/14/2012

2/14/2012

Problems and Assumptions of UP

UP (and many other heavyweight methodologies)
concentrate on carefully controlled, ufvont,
documented thinking.

Based on assumption that cost of making changes
rises exponentially through the development
stages.

To minimize backtracking, UP establishes rigorous
control over each stage.

At each stage of UP, a model acts as a proxy for the
whole system, helping to bring out problems as
early as possible (before they are set in code).

Problems and Assumptions of UP (2)

Heavy training, documentation, and tools
requirements? learning and using UML, modelling,
process, tools, techniques.

UML is not a native language for customers, and so
they often cannot provide good feedback until
system is implemented.

Requirements are very difficult to change at later
stages, if needed to match changes in business
world, address new competition, or fix mistakes in
requirements capture.

ECSC409: Software Engineering Principles

Extreme Programming (XP)

THIS ISWHATYOU DID SO FARWITH YOUR IN-
CLASS PROJECT....

10

2/14/2012

Main premise

What if it were possible to make the cost of
change constant across all stages, so that
design and requirements can be changed
even at late stages?

XP tries to prevent backtracking by keeping
the system continuously flexible, eliminating
the need for determining the final correct
requirements and design before
implementation.

80 OOAOOAA OEA OOAT A
(like Scrumand Crysta), focusing on closely
knit, fast moving design/coding teams and

practices

UP cycles vs. XP development

PHASES

Inception
ele
Maintenance

dev

:
N i m
h [
Requirements ‘_u_ Requirements
— —
- VL i " r...-“
Z Amlysis | e | || = Analysis
= T — B
] o o 3 l.-.-“
Z Design | e | S Desin
£ T — £
= — -
= Implementation | . Z Implementation
= o
. o
Test U W Test
Hr—— o
123456789 12345678
ITERATIONS RELEASES

11

XP is controversial?

An IBM Java poll on XP from
www.xprogramming.comnsaid roughly this:

0) 60A OOEAA EO AT A 11 06/
0) 80OA OOEAA EO AT A EAO!
0) 660 A CiiT A EAAA AOO ¢
0) 6860 AEG AR GBIARAI AGAO x

Ou Ou

Of course, the UP is widely resented as well...

Can you impose control with XP?

AEOQOT OCE A OAO 1T &£ O
designers adhere (using whatever other
compatible methods and tools they
prefer).

http://www.extremeprogramming.org/rules
.html

Some key practices for imposing

control over XP: Planning

'T 80 DPOTEAAO OOAOOO xE
4EA OAOOOI T AO6 AAEET AO
AROEOAA OOOAO OOI OEAOGS
The programmers provide cost estimates for
implementing the user stories in appropriate
combinations.

No one is allowed to speculate about producing a
total system which costs less than the sum of its
parts...

2/14/2012

12

http://www.xprogramming.com/
http://www.extremeprogramming.org/rules.html
http://www.extremeprogramming.org/rules.html

User Story vs. Use Case

A user story meets a similar need as a use
case, but is textual, not graphical, and is
something that any customer can do without
training in UML.
A user story deliberately does not include all
the possible exceptions, variant pathways,
etc. that go into use cases.
3EI 06 AgAipi Ag O! AA
1'4- Al A xEOEAOAxO ||

TE
T AL

37

Some key practices for imposing

control over XP: On-site Customer

Someone who is knowledgeable about the
business value of the system sits with the design
team.

This means there is always someone on hand to
clarify the business purpose, help write realistic
tests, and make small scale priority decisions.
The customer acts as a continuously available
source of corrections and additions to the
requirements.

Some key practices for imposing

control over XP: Small Releases

Put a simple system into production early,
implementing a few important user stories.
Rerelease it as frequently as possible while adding
significant business value (a set of important user
stories) in each release.

E.g., aim for monthly rather than annual release
cycles.

The aim is to get feedback as soon as possible.

2/14/2012

13

Some key practices for imposing

control over XP: Continuous Testing

Write the tests before writing the
software.

Customers provide acceptance tests.
Continuously validate all code against
the tests.

Tests act as system specificatidn

Some key practices for imposing

control over XP: Simple Design

Do the simplest thing that could possibly
work.

$1 1780 AAOECH yoEMght ol 1 1
need it.

%POOA Al Pl AGEOU AAA,
fossilise your design (e.g. your class
hierarchies) and get into the way of the
changes you will need to make tomorrow.

Some key practices for imposing

control over XP: Refactoring

When tomorrow arrives, there will be a few cases
where you actually have to change the early simple
design to a more complicated one.

Change cannot occur only through small, scattered
changes, because over time such changes will
gradually turn the design into spaghetti.

To keep the design modifiable at all stages, XP relies
on continuous refactoring: improving the design
without adding functionality.

2/14/2012

14

Some key practices for imposing

control over XP: Refactoring

When tomorrow arrives, there will be a few cases
where you actually have to change the early simple
design to a more complicated one.

Change cannot occur only through small, scattered
changes, because over time such changes will
gradually turn the design into spaghetti.

To keep the design modifiable at all stages, XP relies
on continuous refactoring: improving the design
without adding functionality.

43

'TUTTA EO AT1TxAA Of
code modules, without permission, if he or
she believes that this would improve the
overall system.

To avoid chaos, collective ownership requires
a good revision controltool, but those are
now widely available

See also your-class project...

a4

Coding Standards Continuing Integration
Since XP requires Integration and fultest-
collective ownership suite validation happens
(anyone can adapt no more than a day after
ATUITA Al OA80O cadeshdenOE A
conventions for writing This means that
code must be uniform ET AEOEAOAT O,
across the project. accumulate a library of
This requires a single possibly relevant but
coding standard to obscure code.

which everyone adheres.

2/14/2012

15

