
2/14/2012

1

ECSC409: Software Engineering Principles

1

 A methodology is a system of methods and
ÐÒÉÎÃÉÐÌÅÓ ÕÓÅÄ ÉÎ Á ÐÁÒÔÉÃÕÌÁÒ ȰÓÃÈÏÏÌȱ ÏÆ
software design.

2

ÁA wide variety of published methodologies
ÁAn even larger set of informal or company

specific methodologies
ÁThe most mature are codified using specialist

tools and techniques
ÁAll methodologies are controversial as of

which is the best one...

3

2/14/2012

2

ÁThe Waterfall model (discussed in many
courses)
ÁSpiral Model
ÁPrototyping
ÁIncremental Development
ÁThe Unified Process (UP)
ÁAgile Methods and Extreme Programming

(XP)

4

5

Inch
pebble iron
bound
contract

Milestone
risk driven
models

Adaptive SW
development

Agile
methods-
XP

Hackers
Milestone
plan driven
models

Software CMM

CMM (Capability Maturity Model)

ÁCowboy hacking and micromanaging at the

extremes of the continuum
ÁBasic distinction: Agile vs. Heavyweight
ÁAgile methods are more fashionable to
ÄÉÓÃÕÓÓȟ ÂÕÔ ÉÔȭÓ ÈÁÒÄ ÔÏ ÔÅÌÌ ×ÈÁÔ ÐÅÏÐÌÅ ÁÒÅ
actually using J

6

2/14/2012

3

ÁOther: Cleanroom, DSDM, V-model, Scrum,
etc.)

ÁOpen Source Design: More of a philosophical
approach than a methodology, but with
implications for methodology

7

Á CMM: Capability Maturity Model (see also slide with
Continuum)

Á A service mark owned by Software Engineering Institute
(SEI), Carnegie Mellon University

Á Based on observation rather than theory (data collected
from many organisations)

Á!ÐÐÌÉÅÓ ÔÏ ÁÎ ÅØÉÓÔÉÎÇ ÏÒÇÁÎÉÓÁÔÉÏÎȭÓ ÓÏÆÔ×ÁÒÅ ÄÅÖÅÌÏÐÍÅÎÔ
process

ÁMost organisations measured in the range 1-3 with only very few
exceptions having reached level 4 (CMM scale: 1-5 ɀ 5 is the top) L

Á More on CMM:
http://en.wikipedia.org/wiki/Capability_Maturity_Model

8

ÁThe Waterfall model (discussed in many
courses)
ÁSpiral Model
ÁPrototyping
ÁIncremental Development
ÁThe Unified Process (UP)
ÁAgile Methods and Extreme Programming

(XP)

9

http://en.wikipedia.org/wiki/Capability_Maturity_Model

2/14/2012

4

ECSC409: Software Engineering Principles

10

11

Á Inspired by older engineering disciplines, such as
civil and mechanical (e.g. how cathedrals are built).

ÁDevelopment of a release is broken into phases,
ÅÁÃÈ ÏÆ ×ÈÉÃÈ ÉÓ ÃÏÍÐÌÅÔÅÄ ÁÎÄ ȰÓÉÇÎÅÄ-ÏÆÆȱ ÂÅÆÏÒÅ
moving on.

ÁWhen problems are found, must backtrack to a
previous phase and start again with the sign-off
procedures.

ÁMuch time and effort is spent on getting early
phases right, because all later phases depend on
them.

12

2/14/2012

5

Á In practice it is rarely possible to go straight through
from requirements to design to implementation,
without backtracking.

ÁThere is no feedback on how well the system works,
ÁÎÄ ÈÏ× ×ÅÌÌ ÉÔ ÓÏÌÖÅÓ ÕÓÅÒÓȭ ÎÅÅÄÓȟ ÕÎÔÉÌ ÎÅÁÒÌÙ ÔÈÅ
very end.

ÁLarge danger of catastrophic failure: Any error in
key user requirements dooms entire process

Á Big chance that the design is not actually feasible
Á Big potential for unacceptable performance

13

Á In my opinion, the waterfall model is simply a
fundamentally flawed metaphor for software
development.

ÁDesign and debugging together account for nearly
all of SW development, with almost no construction
step (just compilation!).

ÁThis is a huge difference from electronic hardware
design (where manufacturing and procurement
typically dominate the process), or civil engineering
(where construction dominates the process).

14

ECSC409: Software Engineering Principles

15

2/14/2012

6

ÁTypical heavyweight approach. Iterative
modification of waterfall model using
modelling to forestall backtracking
Á Component based
Á Uses UML for all blueprints
Á Use-case driven
Á Architecture centric
Á Iterative and incremental

16

ÁThe IBM Rational Unified Process (RUP) is a
commercial product and toolset, superseding:

ÁThe Objectory Process

ÁThe Booch Method

ÁThe Object Modeling Technique (OMT)

ÁThe Unified Software Development Process (UP) is a
published, non-proprietary method based on the
RUP, but without specific commercial tools or
proprietary methods.

17

Á Each software release cycle proceeds through a series of
phases, each of which can have multiple modelling
iterations:

18

Inception Produces commitment to go ahead
(business case feasibility and scope known)

Elaboration Produces basic architecture; plan of
construction; significant risks; major risks
addressed

Construction Produces beta-release system

Transition Introduces system to users

2/14/2012

7

Á Each phase can have
multiple iterations (Project
proceeds top to bottom,
then left to right)

Á Each iteration can include
all workflows, but some are
more heavily weighted in
different phases

Á Still hard to change
requirements once
implementation underway

19

20

21

2/14/2012

8

22

23

24

2/14/2012

9

25

26

27

2/14/2012

10

ÁUP (and many other heavyweight methodologies)
concentrate on carefully controlled, up-front,
documented thinking.

ÁBased on assumption that cost of making changes
rises exponentially through the development
stages.

ÁTo minimize backtracking, UP establishes rigorous
control over each stage.

ÁAt each stage of UP, a model acts as a proxy for the
whole system, helping to bring out problems as
early as possible (before they are set in code).

28

ÁHeavy training, documentation, and tools
requirements ɂ learning and using UML, modelling,
process, tools, techniques.

ÁUML is not a native language for customers, and so
they often cannot provide good feedback until
system is implemented.

ÁRequirements are very difficult to change at later
stages, if needed to match changes in business
world, address new competition, or fix mistakes in
requirements capture.

29

ECSC409: Software Engineering Principles

30

2/14/2012

11

 What if it were possible to make the cost of

change constant across all stages, so that
design and requirements can be changed
even at late stages?

J

31

ÁXP tries to prevent backtracking by keeping
the system continuously flexible, eliminating
the need for determining the final correct
requirements and design before
implementation.
Á80 ÓÔÁÒÔÅÄ ÔÈÅ ÔÒÅÎÄ ÔÏ×ÁÒÄ ȰÁÇÉÌÅȱ ÐÒÏÃÅÓÓÅÓ

(like Scrum and Crystal), focusing on closely
knit, fast moving design/coding teams and
practices

32

33

2/14/2012

12

ÁAn IBM Java poll on XP from
www.xprogramming.com said roughly this:

ÁȰ)ȭÖÅ ÔÒÉÅÄ ÉÔ ÁÎÄ ÌÏÖÅÄ ÉÔȱ ɉΫΧϻɊ

ÁȰ)ȭÖÅ ÔÒÉÅÄ ÉÔ ÁÎÄ ÈÁÔÅÄ ÉÔȱ ɉήϻɊ

ÁȰ)ÔȭÓ Á ÇÏÏÄ ÉÄÅÁ ÂÕÔ ÉÔ ÃÏÕÌÄ ÎÅÖÅÒ ×ÏÒËȱ ɉΨΫϻɊ

ÁȰ)ÔȭÓ Á ÂÁÄ ÉÄÅÁ - ÉÔ ÃÏÕÌÄ ÎÅÖÅÒ ×ÏÒËȱ ɉΧάϻɊ

ÁOf course, the UP is widely resented as well...

34

 4ÈÒÏÕÇÈ Á ÓÅÔ ÏÆ ȰÐÒÁÃÔÉÃÅÓȱ ÔÏ ×ÈÉÃÈ
designers adhere (using whatever other
compatible methods and tools they
prefer).

Áhttp://www.extremeprogramming.org/rules
.html

35

a) !Î 80 ÐÒÏÊÅÃÔ ÓÔÁÒÔÓ ×ÉÔÈ Á Ȱ0ÌÁÎÎÉÎÇ 'ÁÍÅȱȢ
b) 4ÈÅ ȰÃÕÓÔÏÍÅÒȱ ÄÅÆÉÎÅÓ ÔÈÅ ÂÕÓÉÎÅÓÓ ÖÁÌÕÅ ÏÆ
ÄÅÓÉÒÅÄ ȰÕÓÅÒ ÓÔÏÒÉÅÓȱȢ

c) The programmers provide cost estimates for
implementing the user stories in appropriate
combinations.

d) No one is allowed to speculate about producing a
total system which costs less than the sum of its
parts...

36

http://www.xprogramming.com/
http://www.extremeprogramming.org/rules.html
http://www.extremeprogramming.org/rules.html

2/14/2012

13

ÁA user story meets a similar need as a use
case, but is textual, not graphical, and is
something that any customer can do without
training in UML.
ÁA user story deliberately does not include all

the possible exceptions, variant pathways,
etc. that go into use cases.

Á3ÈÏÒÔ ÅØÁÍÐÌÅȡ Ȱ! ÂÁÎË ÃÕÓÔÏÍÅÒ ÇÏÅÓ ÕÐ ÔÏ ÁÎ
!4- ÁÎÄ ×ÉÔÈÄÒÁ×Ó ÍÏÎÅÙ ÆÒÏÍ ÈÅÒ ÁÃÃÏÕÎÔȢȱ

37

a) Someone who is knowledgeable about the

business value of the system sits with the design
team.

b) This means there is always someone on hand to
clarify the business purpose, help write realistic
tests, and make small scale priority decisions.

c) The customer acts as a continuously available
source of corrections and additions to the
requirements.

38

a) Put a simple system into production early,
implementing a few important user stories.

b) Re-release it as frequently as possible while adding
significant business value (a set of important user
stories) in each release.

c) E.g., aim for monthly rather than annual release
cycles.

d) The aim is to get feedback as soon as possible.

39

2/14/2012

14

ÁWrite the tests before writing the
software.
ÁCustomers provide acceptance tests.
ÁContinuously validate all code against

the tests.
ÁTests act as system specification J

40

ÁDo the simplest thing that could possibly
work.
Á$ÏÎȭÔ ÄÅÓÉÇÎ ÆÏÒ ÔÏÍÏÒÒÏ× ɂ you might not

need it.
Á%ØÔÒÁ ÃÏÍÐÌÅØÉÔÙ ÁÄÄÅÄ ȰÊÕÓÔ ÉÎ ÃÁÓÅȱ ×ÉÌÌ

fossilise your design (e.g. your class
hierarchies) and get into the way of the
changes you will need to make tomorrow.

41

ÁWhen tomorrow arrives, there will be a few cases
where you actually have to change the early simple
design to a more complicated one.

ÁChange cannot occur only through small, scattered
changes, because over time such changes will
gradually turn the design into spaghetti.

ÁTo keep the design modifiable at all stages, XP relies
on continuous refactoring: improving the design
without adding functionality.

42

2/14/2012

15

ÁWhen tomorrow arrives, there will be a few cases
where you actually have to change the early simple
design to a more complicated one.

ÁChange cannot occur only through small, scattered
changes, because over time such changes will
gradually turn the design into spaghetti.

ÁTo keep the design modifiable at all stages, XP relies
on continuous refactoring: improving the design
without adding functionality.

43

Á!ÎÙÏÎÅ ÉÓ ÁÌÌÏ×ÅÄ ÔÏ ÃÈÁÎÇÅ ÁÎÙÏÎÅ ÅÌÓÅȭÓ
code modules, without permission, if he or
she believes that this would improve the
overall system.
ÁTo avoid chaos, collective ownership requires

a good revision control tool, but those are
now widely available.

ÁSee also your in-class project...

44

ÁCoding Standards

ÁSince XP requires
collective ownership
(anyone can adapt
ÁÎÙÏÎÅ ÅÌÓÅȭÓ ÃÏÄÅɊ ÔÈÅ
conventions for writing
code must be uniform
across the project.

ÁThis requires a single
coding standard to
which everyone adheres.

ÁContinuing Integration

ÁIntegration and full-test-
suite validation happens
no more than a day after
code is written.

ÁThis means that
ÉÎÄÉÖÉÄÕÁÌ ÔÅÁÍÓ ÄÏÎȭÔ
accumulate a library of
possibly relevant but
obscure code.

45

